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Thermomechanical Coupling in Frictionally Heated 
Circular Couette Flow 
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Tile thernaonaeclaanical coupling in circular Couette rheometers is investigated. 
Asymptotic solutions of second order in tile Brinkman number. Br, are 
developed Ibr Newtonian fluids whose viscosity and thermal conductivity can bc 
expressed as quadratic functions of temperature. The derived solutions are 
validated by comparison to previously published series solutions as the limit of 
planar Ilow is approached as well as to numerical solutions and are found to be 
reliable Ibr a practical range of the Nahme number. These solutions are explicit 
in Br and in the properties of the Iluid and thus provide yah,able insight into 
the functionality of tile relevant dependences, something that is lost in purely 
numerical solutions. 

KEY WORDS: circular C'ouette Ilows: rhcology: viscous heating. 

1. INTRODUCTION 

The interaction between viscous heating and flow is of importance in a 
number of applications involving flow of materials with temperature- 
dependent properties. These include polymer processing [ 1-3], tribology 
and lubrication [4] ,  food processing [5, 6], and viscometry [7-10].  In the 
latter area, viscous heating is always a possible, and frequently significant, 
source of error in viscometric measurements at high shear rates, par- 
ticularly with rotational viscometers where the entire sample is sheared 
continuously during the measurement. Many attempts have been made to 
obtain analytical solutions, including the effects of viscous heating and tem- 
perature-dependent material properties, for combined flow and heat trans- 
fer in rotational viscometers. A review of early work in the field has been 
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given in Ref. 11. When the thermal conductivity of the fluid is constant and 
the viscosity an exponential function of temperature, an analytical solution 
for planar Couette flow has been derived by Nahme [ 12] and quoted by 
Turian and Bird [9]. Gavis and Lawrence [-13] revisited the Couette flow 
problem and, after formulating it in terms of the shear stress, determined 
that two solutions for velocity and temperature exist at each value of the 
shear stress below a critical level (which they determined for each case; see 
also Ref. 14), one solution at the critical stress and no solution above it. It 
can be shown that the lower branch of their solution coincides with the 
result of Nahme [ 12], which has the advantage of being presented in an 
explicit form. The fact that two solutions exist below the critical stress 
poses no problem from the physical viewpoint, since, as the stability analysis 
of Joseph [15, 16] has shown, the solutions corresponding to the upper 
branch (the one predicting higher temperatures) are unstable. This means 
that in analyzing equilibrium experimental data, only the lower (stable) 
branch of the solution needs to be considered. Higher temperatures (corre- 
sponding to the upper branch) may develop in practice, but, being 
unstable, they will tend to revert to those corresponding to the stable 
branch. Gavis and Lawrence [-13] proceeded to present solutions for both 
planar and circular Couette flows of a fluid with constant thermal conduc- 
tivity and viscosity described as an exponential function of temperature. 

The assumption of constant thermal conductivity is common in all 
previous analytical results and has been justified by necessity (no closed- 
form solutions exist when the thermal conductivity of the fluid is tem- 
perature dependent) as well as by the relative temperature invariance of 
the thermal conductivity of polymer melts and commonly used fluids. 
However, there are a number of applications, particularly in the food 
industry or in applications involving phase transformations coupled with 
flow, in which this may not be necessarily a valid assumption. Bird et al. 
[7],  Turian and Bird [9],  and Turian [ 17] have presented a methodology 
(attributed to Broer [ 18]) for obtaining approximate analytical solutions, 
in the form of series expansions in the Brinkman number Br, to the 
problem of combined flow and heat transfer for materials whose viscosity 
and thermal conductivity are polynomial functions of temperature. They 
then proceeded to develop such solutions, up to second order in Br, in the 
case of planar Couette flow and derived formulae for the associated correc- 
tions in cone-and-plate rheometry. 

The present contribution applies the same method and develops series 
solutions, up to second order in Br, for circular Couette flow. This device, 
frequently called wide-gap Couette, has received attention recently in the 
study of microstructure evolution during processing of concentrated suspen- 
sions [ 19-22] and is an excellent candidate for the study of fiber motion 
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in nonhomogeneous flow fields [23, 24]. Many of the test fluids used in 
such studies are Newtonian, with a relatively high, temperature-dependent 
viscosity, and there is a need for explicit solutions for the velocity field 
which will take into account viscous heating and the effect of temperature 
on the transport properties of the fluid. Such solutions can be linked, as 
decoupled explicit modules, to numerical, microstructure-oriented models, 
such as the ones presented by Phillips et al. [ 19] for particulate suspen- 
sions or by Phan-Thien and Graham [25] and Ranganathan and Advani 
[26] for the evolution of the orientation in fiber suspensions. Section 2 
gives an outline of the mathematical model, the method of solution, and 
the series solutions obtained. Section 3 is concerned with the validation of 
the series solutions using well-tested numerical algorithms and presents 
results for the distribution of velocity and temperature for various values of 
geometrical and flow parameters. 

2. THE MATHEMATICAL MODEL 

We consider steady, incompressible flow in the Couette device shown 
in Fig. 1. This device consists of two concentric cylinders of radii R and ~tAR 
(x < 1 ), the inner one of which is stationary and the outer is rotating with 
constant angular velocity s The only nonzero velocity component in this 
geometry is the tangential velocity uo, there is no tangential pressure drop, 
and the equations of motion and energy reduce to 

""N 
x- 7 (1) 

_ 1 2 /  x &" lgX-&xJ~ + m s  L & \.v/d 

where the tbllowing nondimensionalization has been applied: 

O=  
T -  To r u,, fro(OR) 2 

, x = - -  u = B r  = ( 3 )  

To R' (2R' k o To 

In Eq. (3), Br is the Brinkman number, which is a measure of the heat 
generated by viscous heating as compared to the heat conducted through 
the material and To is a reference temperature. Closed-form solutions to 
Eqs. (1) and (2) have been obtained for certain limiting cases ([7, 9, 13] 
and references therein). In this work we are interested in obtaining 
asymptotic analytical solutions to Eqs. (1) and (2) for fluids whose 
transport properties, namely, the viscosity and the thermal conductivity, 
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r=R 

0 ~ 

s 

Fig. I. Schematic description of the Couette 
apparatus. 

are arbitrary polynomial functions of temperature. Such dependences can 
be expressed around a reference temperature To as 

k / 
- - = 1 +  ~ ~iOi (4) 
k,, i = i 

/ 

/z'~= 1 + ~ fli Oi (5) 
/'1 i = l  

where the order of the approximations are not necessarily equal and where, 
in practice, the coefficients 0c; and fli will be determined by fitting experi- 
mental data. This presentation of material property data is very common 
in the process industries and has been a motivation for the development 
of the solutions presented in this study. The subscript (0) in Eqs. (4) 
and (5) indicates (known) property values corresponding to the reference 
temperature To. We consider the following boundary conditions. 

At x = it- (inner cylinder surface): u = 0 and 

At x = 1 (outer cylinder surface): u = 1 and 

06)/Ox = 0 (6a) 

O = 0  (6b) 

It should be noted that the solution procedure presented in this work is 
quite general and can admit derivative as well as nonzero Dirichlet condi- 
tions on either of the cylinder surfaces. A solution to this problem with 
isothermal walls has been presented in Ref. 27. 
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2.1. Method of Solution 

We seek approximate analytical solutions to Eqs. (1) and (2) subject to 
boundary conditions Eqs. (6a) and (6b), for fluids whose transport properties 
are described by Eqs. (4) and (5). Such solutions can be formulated as pertur- 
bations with respect to the Brinkman number Br [7, 9] as follows: 

u(x) 
= uo(x) + ~, u,,(x) Br" (7) 

x n = ]  

N 
O(x) = Oo(x) + ~ O,,(x) Br" (8) 

n ~ [  

In the absence of viscous heating (Br=0)  the system is isothermal and 
therefore Oo(x) in Eq. (8) is identically zero. The objective of the solution 
procedure is to determine the cofficient functions u,,(x) and O,(x). This is 
outlined in the following two sections. 

2.1.1. Tlle Momentum Equation 
Substitution of the velocity profile from Eq. (7) into the momentum 

equation [ Eq. ( 1 ) ] yields 

0~u I x3 ~o (,,~o Br" 0 ~ ' c ) ) ]  = 0 (9, 

Integrating Eq. (9) once and expanding the integration constant (C) as a 
polynomial in Br yields 

Br,,Ou,,(x) 1 po ~ C , , , B r ' " - - ~ ( I +  ~ fl,O') ~ C,,,Br'" (10, 
n = O  O N  X 3 ,U m = 0  i = 1  m = O  

where the coefficients Co, CI ..... CN are constants to be determined and 
where the dependence of viscosity on temperature was taken into account. 
Equating equal powers of Br on the left- and right-hand sides of Eq. (I0) 
results in (N+ 1) ordinary differential equations for the (N+ 1) functions 
u,,(x). The first three of these equations, corresponding to a solution of 
second order in Br, follow 

aUo Co = ---a- (11) 
8x x 

8u, = 3l 6)t(x) Co + CI (12) 
6~X X 3 

&. [~, O2(x) +&~O.(x)] Co + e,(x)/~, c, + c2 
= ( 1 3 )  

8x x 3 
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2.1.2. The Energy Equation 

A first integration of the momentum equation yields 

0 _ 1/~o ~. C,,,Br'" (14) 
OX X 3 / 1  m = o 

Substituting this result into the energy equation yields 

x O x  x +Br/lOx2 1 u 2 L C,,,Br"' = 0  (15) 
]A X "  ,,, = t 

Taking into account the temperature dependence of K and/1 and expressing 
O as a power series in Br [Eq. (8)] results in 

x Ox 1 + o~iO i x Br i ~ ]  
i = l  i = l  

i=, " [-~7,,~, C,,,Br"'} : 0  (16) 

As before, equating the coefficients of equal powers of Br results in N 
differential equations for the N functions O,,(x). The first two of these, 
corresponding to a solution of second order in Br, follow 

s ,oo,] =-Co (17) 
Ox L ~ Ox ] .,g 

o [ oo:  oo , ]  - I  , 
Ox k x T z + ~ 1 7 6  ax j =-~-[2CoC,+f l ,O , ( x )  C~] (18) 

2.2. The Second-Order Series Solution 

Analytical integration of the ( 2 N + l )  ODEs described by Eqs. 
(11)-(13), (17), and (18) yields approximations for the velocity and tem- 
perature profiles inside the circular Couette. Because the expressions to be 
integrated include powers of x, terms containing In(x), as well as products 
thereo[~ the algebraic complexity of the solutions increases significantly 
with the order of the expansion in Br. The solution for the circular Couette 
flow with N--2,  follows. 
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Velocity." 

(K 2 - x  2) 
Uo(X) = ( _ 1 + h "2) x 2 (19) 

u t ( x ) = [  ~ (--l+x4--41n(K)+41n(x)--41n(x)x2)]fl'C3+ 

(20a) 

with 

1 o 3  (x 2 -- 1 - 4 1 n ( K ) )  2K 2 
U, = g  plCO K2(__l + K  2) ' C0- -  l__K2 

U2(X)=U2~(X)+U2fl(X)+U2y(X) 

(20b) 

(21) 

where 

u2~(x) = 1 Co 5 (fl, ~2--2/~2)~#x2 ln(x) 2 (22) 

1 (2X2K2--K 2 - -2X  2) 
u2/~(x)= 16 X4K4 [~v "I-U2flI(X)]~ 1 

1 ( 2 x 2 K 2 -  a :2 -2x2)  ] 5 
32 at X4K4 J~l J In(x) C O (23) 

with 

-- 1 (8x 2 In(K) + 4x 2 In(K) a. "2 --  7X2K 2 + 6x-" + x2x 4 - x 2 + x 4) 

u2/~t(x) = 32 K4( - 1 +af t )  x 4 

- 1  
U27(X ) = ~ (U2}'I X 6 -or- U2y2 x4 "]- U2}.3 x2 + U2},4) 

(24) 

(25) 

The coefficients u2rl-u2r4 in Eq. (25) are given in Appendix A as functions 
of (x) and of  the fluid properties.  The zeroth-order  result, u o, coincides, as 
expected, with the well-known solution for circular Couet te  flow of  a fluid 
with tempera ture- independent  properties. 

Temperature: 

Or(x)  = [-~41 (2 l n ( x ~ - x 2 )  K- 
1]  26, 

O2(x) = Ft ln(x) z + F2(x) ln(x) + F3(x) (27) 
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where the coefficients F~-F3 are given by 

F, = 8 ~ C ~  (27a) 

[ [ (4  In(x) + 4  In(x) h.2 _ 3h.2 + 3) fls -- 2~ K2( 1 -- h2)] X2~ 
CI 4 + 2K2(K 2 --  1 )(fl, - ~, )] 

F,(x) - 16 h4x2( - 1 + h"-) 

(27b) 

(( 4x2- 5X2K~-I-X2h-4-i t- 16.x"ln(h')--h'2+Ka)flt) 
(x  e -  I'~ + 2 e , h - - . ( -  1 + K2)(x 2 -  1) 

F3(x) = C'4 \h-" - 1] ( - 6 4 )  h2x 4 

(27c) 

The first-order result O~(x) corresponds to the circular Couette flow of a 
fluid with temperature-independent transport properties. Evidently, the 
second-order result for temperature considers only linear dependence of l~ 
on O [only the coefficient flj appears in Eqs. (26) and (27)]. For this 
reason, the series solution for temperature given by Eqs. (26) and (27) is 
valid for a narrower range of Brfl than the velocity solution. We do not 
consider this a critical disadvantage, since the main use of the presented 
solutions is anticipated to be in the interpretation of rheological data and 
the description of the flow field in the Couette. When a higher accuracy in 
temperature is needed, a third-order solution, of the form 

O(x) = Ol(x) Br + O2(x) Br2 + O3(x) Br 3 (28) 

has also been derived in the context of this study. This solution offers an 
extended range of accuracy as compared to the second-order solution, at 
the cost of being significantly more complicated. The obtained expression 
for O3(x) is shown in Appendix B. 

3. V A L I D A T I O N  O F  THE SERIES S O L U T I O N  

To determine the range of validity of the proposed series solution, the 
boundary-value problem defined by Eqs. (1) and (2)is solved numerically, 
subject to the boundary conditions of Eqs. (6a) and (6b) and with material 
properties corresponding to Eqs. (4) and (5). The governing Eqs. (1) and 
(2) are rendered explicit in the derivatives of u and O through application 
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of the chain rule. After some manipulation, the momentum equation takes 
the form 

d2u(x) du(x) 
A(x) dx----y--+ B(x)--ff-~-x+ C(x) u(x)=0 (29) 

with 

A(x)  =x:[1 +/3, O(x)  +/3,O~(x)] 

dO(x)]  dO(x) 2xflzO(x)~__x j (30) B(x)=x l+fl2OX(x)+fllO(x)-fllx dx 

dO(x) O(x)  O2(x) 1 dO(x)] 
- f l ,  - -  ~ - 2 f l ~ O ( x )  C(x) = x fl, dx  fl' x x x T I 

while the energy equation can be written as 

(dO(x)'~ 2 , [1 
[~, + 2 a , O ( x ) ]  \ _  dx J +{l+~176 T 4-dO(x) dZO(X)]dx_ j 

+ Br[ 1 + fl, O(x) + fl, O(x) 2] - '  
, c l ( u ( x ) / x )  

x - -  = 0  (31) 
dx 

Equations (29)-(31) are discretized using central finite differences and are 
solved through a successive relaxation algorithm [28 ]. The accuracy of the 
numerical algorithm has been verified through detailed comparison with 
the analytical solution of Gavis and Lawrence [ 13 ], obtained for fluids of 
constant thermal conductivity. 

It should be pointed at this stage that the Brinkman number alone 
is not sufficient to quantify the effect of viscous heating on the velocity 
profile in fluids with temperature-dependent viscosity. This is evident, 
since the velocity profile in a fluid with constant viscosity (f l i=0) will 
remain unaffected by viscous heating irrespective of the magnitude of the 
Brinkman number. The appropriate scale in this case is the Nahme 
number, defined as Na = Br(Olt/OT)(Tc,/kto) [29]. For this reason, viscous 
heating is quantified by the use of the product Brfl instead of Br alone in 
the following discussion. Table I summarizes the results of a comparison 
between numerical (based on 400-node spatial discretization) and series 
solutions, for values of the product Brfl ranging from 0.5 to 2.0 and for 
two values of the eccentricity parameter h-, namely, h-= 0.75 and h" = 0.85. 
Listed is the magnitude of the norm of the percentage relative differences of 
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Table 1. The N o r m  of the Difference Between Numer ica l  and  Series Solut ions  for 

F low ill a C i rcu la r  Coue t t e  tbr a Range of Values  of the Produc t  Brfl: 

f t = f l l -  1, [3 2 =0.5 ,  ~l =0 .1 ,  co, = 0.1 

ic = 0.75 i, = 0.85 

Brfl Norm(uR) Norm(Oi0 Norm(uR) Norm(O~) 

0.5 0.044 0.29 0.053 0.34 

1.0 0.33 2.56 0.40 2.96 

1.5 1.03 8.61 1.26 10.0 
1.75 1.56 13.55 1.92 15.8 

2.0 2.24 20.01 2.74 23.3 

velocity and temperature [norm(UR) and norm(OR), respectively], which 
are defined as 

100 ~. IF~-F~I 
norm(FR)=- -~- j= ,  ~,, (32) 

where F is either temperature or velocity, the subscripts s and n indicate 
series and numerical solutions respectively, the subscript j indicates the j t h  
point across the gap, and K is the total number of points across the gap. 
Evidently, the accuracy of the series solution for the velocity profile is 
satisfactory, with the norm of the errors being less than 1% for Brfl up to 
around 1.5 (depending on K). The same is not true for the temperature 
profile; the norm of the errors is less than 5 % only for Brfl less than 1.5. 
Furthermore, the maximum deviation between series and numerical solu- 
tions occurs at the location of the maximum temperature and is higher 
than the average errors shown in Table I; for Brfl= 1.0 the maximum 
relative error for the temperature is 3.54 %, while for Brfl = 1.5 it is 11.6 % 
(Jc =0.75). A more detailed comparison between the numerical and the 
series solutions for velocity and temperature across the gap of the Couette 
for three values of ~- is given in Figs. 2-4. In agreement with the trends 
shown in Table I, the discrepancy between numerical and analytical solu- 
tions increases slightly as the gap of the Couette becomes narrower. It can 
also be seen in Figs. 2-4 that the series and numerical solutions for velocity 
are practically indistinguishable. 

Further to the validation of the presented series solution, it can be 
shown that formal limits (as h" approaches unity) of the expressions 
obtained for Uo-U 2 and On-02 [Eqs. (19)-(27)] yield the velocity and tem- 
perature profiles corresponding to planar Couette flow (obtained by Turian 
and Bird [9] and verified by the present author and Louwagie [-30]). The 
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Fig. 2. Comparison between series solutions (of the 
second order for u and third order for O) and numerical 
solution for frictionally heated circular Couette flow. 
Material parameters are as in Tablel,  Brfl= 1.5, and 
h- = 0.625. 

derivation of these limits for Uo-U~ and 0~-O2 is straightforward and is 
omitted here for the sake of brevity. The derivation of the limit correspond- 
ing to the term u, is more tedious because of its algebraic complexity and 
proceeds as follows: The term corresponding to u, in planar Couette flow, 
U2p(~), can be written as 

u2o(~) = fl~ fJ(~) + f12 f2(~) + fl, o~, f3(~) (33) 

1.0 

0.8 = 

"9 
0.6 

-~ 0.4 

E 

0.2 

0.75 

i i i i 

Points: Numerical Solution 
Lines: Series Solution ~" 

~- Velocity 

K-=0.75 

Temperature - . .  
D-. 

""-~.  . 

I I I 

0.85 0.95 

Distance across the Gap (x) 

.= 

E 

Fig. 3. Comparison between series solutions (of the 
second order for u and third order for O) and numerical 
solution for frictionally heated circular Couette flow. 
Material parameters are as in Table I, Brfl= 1.5, and 

h =  0.75. 
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Fig. 4. Comparison between series solutions (of the 
second order [br u and third order lbr O) and numerical 
solution for frictionally heated circular Couette flow. 
Material parameters arc as in Table I, Br/~= 1.5, and 
h = 0.85. 

where fl(~)-f3(~-) are polynomials in (~.) [9, 28] and ~ is the corresponding 
dimensionless coordinate ~_ = (x + h-)/( 1 - h). Equation (21) can be recast 
in the form of Eq. (33) as 

u2(~.) = A ,(h, ~) fl~ + A-,(K, r f12 -F A3(K, ~) fl, o~, (34) 

It can then be shown that 

lim [A,(h-, ~)] = f~(~), l im[A2(h',~)]=f2(~.),  lim [A3(h, ~)] =f3(4) 

Similar tests have been carried out lbr the third-order term [ O3(x)]  shown 
in Appendix B. In light of the algebraic complexity of the presented series 
solutions, it is desirable to have an estimate of the improvement in accuracy 
offered by higher-order approximations. Table II shows the variation of the 

Table 11. Relative Percentage Errors Associated with the First-, Second-, and Third-Order 
Series Solutions for Velocity and Temperature for a Range of Brfl and for ~c = 0.625" 

Brfl Norm(uo) Norna(tq ) Norm(u2) Norm(O~ ) Norm( O 2 ) Norm(O3) 

0.5 2.46 0,30 0.03 11.2 1.76 0.23 
1.0 4.32 1,05 0.23 21.6 6.75 1.97 
1,5 5.79 2.11 0.72 31.3 14.6 6.59 
1.75 6.41 2.72 1.09 36.0 19.5 10.37 
2.0 6.98 3.39 1.57 40.5 25.0 15.3 
2.5 7.96 4.81 2.82 49.2 37.7 29.2 

"The  material parameters are as in Table I. 
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Fig. 5. Compar i son  between series solutions 1oi" the 
first, second, and third order  in Br) and the numerical 
solution for frictionally heated circular Couette flow. 
Material parameters  are as in Table I. Brfl = 1.0. 

relative percentage error [RPE: defined as in Eq. (32)] of the zeroth-, first-, 
and second-order solutions lbr velocity and the corresponding solutions for 
temperature for 0.5 < Br]3 < 2.5 and h-= 0.625. Columns 2~J~, indicated as 
norm( u. )-norm( u, I are the RPEs associated with the zeroth-, first-, and 
second-order series solutions for velocity, while columns 5-7 are the corre- 
sponding errors of the temperature solutions. Evidently, the second-order 
solution lbr the velocity [Eqs. (19)-(25)] is accurate to within 1% RPE 
[br Brfl < 1.75, while the first-order result is accurate to within 1% RPE 
only tbr Brfl < 1.0. Similar conclusions can be drawn ['or the temperature 
solutions. Figure 5 shows a further comparison of the performance of 
various-order series solutions for temperature, tbr Brfl = 1.0 and K---0.75. 
The improvement offered by the third-order series solution for temperature 
is evident. 

4. C O N C L U S I O N  

Series solutions, up to second order in the Brinkman number, Br, have 
been developed for circular Couette flow of materials whose viscosity and 
thermal conductivity can be expressed as polynomial functions of tem- 
perature with arbitrary coefficients. At this stage, no experimental data are 
available tbr comparison. However, the derived solutions have been 
validated by extensive comparison with numerical solutions and are tbund 
to be reasonably accurate for a practical range of the Nahme number. The 
norm of the relative errors in the predicted velocity profile is less than 1% 
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for Brfl < 1.5 in a Couet te  with K = 0.75 and less than 1% for Brfl < 1.2 in 
a Couet te  with K = 0.85. The  presented solutions exhibit  the anticipated 
asymptot ic  behavior  as 1,- approaches  unity and provide valuable insight 
into the functionali ty of  the relevant dependences,  something that  is lost in 
purely numerical  solutions. 

A P P E N D I X E S  

Appendix  A 

The coefficients appear ing in the expression for the second-order  term 
in the velocity profile [Eqs. (21) - (25) ]  are as follows: 

u2r, = - 384(A ~0,-) f12 + A , (x )  fl~ + A3(K ) fl, .cr ) (A1)  

5 Ua..2 = C o uzr21 + 192u2r22 (A2) 

where 

3 
u2r2, = - -  [( - 3 K  4 + 12K 2 -- 16 In(K) -- 12) fl~ 

K 4 

+ ( - -2x  4 -- 4 + 4/c2)(f l ,  ~x, - 2 ~ 2 ) ]  

u2r22 = A4(K) fl~ + As(K)fl, o~, --fl2A60c) 

u2~,3 = [ 3  (--5R'2+ K4 + 4  + 12 ln0c) )  
K2( - 1 + ~.2) f17 

+ 3  
( - 1  + D c  2) 

K 2 
fl ,~,  +6fl-~22-12fl21 C,] 

u2r4 = (fl~ + 4fl2 - 2fl~ cr ) C,] 

(A3) 

(A4) 

(A5) 

(A6) 

The  constants  A n(h')--A6(h') a r e  given by 

A ~ ( K ) = I  .6 (--19a4--1D"41n(x) +4a6 + 26K2 + lO81n(a)l~) 
- -48 In(K)-" a-2-- 96 ln(tc) - -96  ln(tc) 2 -  1 

( - 1 + h.2)7 

= - 1  K6 (4K 4 + 5 + 24 ln(h-) 2 + 36 ln (x )  - 24 ln(x)  h.2 _ 9h--') 
A 2(/ t  ) T ( - 1  +K2) 6 

(A7) 

(A8) 
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A 3(h-) = 1 K6 (5 - 9K 2 + 4K 4 + 36 ln(h-) - 24 ln(K) x 2 + 24 In(n)'-) 
( - 1  q-K2) 6 

( [ 5 K 8 -  38x6 + (24 In!x) + 108) x4 + (-  168 ln(K) "~ 

- K  6 \ - 122+48 ln(~-)-)K2 + 144 ln(h-) + 96 ln(x)2 + 4 7 ] J  
A4(h) = - -  

(A9) 

6 ( - 1  + ~.2)7 

1 
As(h) = g ( - 1  +h-2)" 

(A10) 

h" ( 15x4 - 2 h ' 6  + 36 In(h-) -- 30 ~.2 _ 24 In(K) x 2 + 24 In(x) 2 + 17) 

( A l l )  

A6(K } = ~ (2K 6 --  15h "4 --  17 - 24 In(K) 2 

K 6 
- 36 In(x) + 24 ln(h') h -2 + 30x2)( 

1 K2) 6 + 
(A12) 

A p p e n d i x  B 

The third-order term O3(x) in Eq. (28) can be expressed as follows: 

03(x) = L31n(x)3 + Lz(x) ln(x)2 + Ll(x) ln(x) + Lo(x) (B1) 

where the coefficients L.-L 3 are given below: 

(1)(1) 
Lo(x)=Lo:, +L,,/r ~ +L,,,. ~ +Lo,, (B2) 

I- 1 Lo~t fl~ (3+41n(h-)--4h-- '+x4)  2 1 ] 
L ~  ~-) 256 x4( -X+x2)  2 -~_C~ C~ 6 (B2a) 

1 Lore C 6 (B2b) 
Lo/r - 256 K2( - -  I + x 2) 

- C'6 ( 18cc] - l l f l~  ~ t  + 4 f l 2  + f l~  - 12~21 (B2c) 
Li~,- 2304 

Lo,~=(J, +~ C2)C[; (B2d) 
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L l ( x ) = [ L i l r  I (-6~176 6 
128 h'2A "4 C O (B3)  

--1 Ll=l  
L l = - -  64  K 4 ( K  2 - -  1) ( B 3 a )  

L , ~  = 2(K-" - 1 )(2h'eCX_, - 2 f 1 2 h  "2 - -  3hZ~x~ + 4]3'~) 

+ ( 12 ln( ic)  - -  1 lh- '  + 9 + 4 I n ( n )  h -~ + 2 h  "4) f l~  

+ ( - 4  In(h-) h-' - 3 h  "2 - -  12 l n ( h )  - 1 + 4 h  "4) f l l  ~ ( B 3 b )  

1 L I/*l 
L t ' -  128 ( - I  + h  2 )  h 4 + H  

(B3c )  

L j, I = 2 h 2 ( K  2 - -  1 )( -3cx~  + 2~x2) 

+ ( - h  -4 - 24 In(h-) - 10 + I lh  -~ - -  8 I n ( x )  h "2) fl ,  ~x, ( B 3 d )  

1 ( - 2 f l : + 3 ~ , / / ,  + 2 ~ . - 3 c ~ ) ]  C2 
L2(.v) = L2~ + 32 h 'ax  2 (B4)  

( - - 3 h  -2 + 3 + 4 I n ( n )  + 4 In(h-) h2)  fl, a~ - h ' 2 ( K  2 - -  1 )( - 3 a ~  + 2o%) 

L2= - 321r -~ - 1 ) 

( B4a ) 

L 3  = - -  4 8  

T h e  c o n s t a n t s  Co,  J~ ,  C2, H,  L ,vn ,  a n d  L o ~  a p p e a r i n g  in  the  e x p r e s s i o n s  

a b o v e  a re  

2h -2 
Co - 1 - h':  ( B6 ) 

1 J l~  (B7J  
JI  - 2 3 0 4  h'4( - -  1 + h ' : )  -~ 

J l :~  = 1 8 h 4 (  h'2 - -  1 ) 2 ~  _ (h.2 _ 1 )(2h 6 - -  29h a - -  144K 2 In(h-) 

+ 135h 2 -  108) f l i cx l  + (216h  "2 l n ( h ' ) +  621h'2 - -  216  In(h ')  

- -  539h  4 - -  26h s + 144 ln{h') 2 + 187h ~' - -  243)  fl{ 

- -  12h'4(h : - -  1 )-'~2 + ( 22h'4 - -  126h'2 + 216) (  h2 - -  1 )2 f12 (BS)  
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C2~t 

( 48(x  2 + 2 ) l n ( x )  2 + 24(x  2 - I ) ( K  2 - 6 ) l n ( ~ ) ~  

+ 5 x s - 3 8 x  6 +  108x 4 -  122x 2 + 4 7  

( - 1  -[- K2) 2 192a 4 

- 1 5 ~  4 + 2 x  6 - 3 6 1 n ( ~ ) +  30~ 2 + 2 4 1 n ( K ) x  2 - 2 4 1 n ( x )  2 -  17 

C2I~= 192~4(~ 2 - 1) 

841 

(B9) 

(B9a)  

(B9b)  

H = I  1 6 (-2fl2 +fl,~.) H,_ +~ Hifl 7 

( [ (  - -48K 4 --  192a -~ -- 96) ln(tc ) 2 --  24(K 4 --  1 )(a.2 _ 6) ln ( i , )~  

1 \ - - 4 7  + 4 1 , ( ' - - 6 1 x 4 + 2 a " ~  + 102x ~ ] ) 
HI - 64 ( - 1 + I,2) -" Ir (' 

(B10)  

[24  1n(/c)2 + 24 ln0c) 2 ic2+ 12 In (x )  i, " 2 -  24 ln(tc) K4"~ 
) 1 + 3 6  ln(~') + 61,4 + 2hJ' + 1 7 -  25~ "-~) 

H , -  

B10a) 

B10b)  
- 64 ( - -1  +a '~ )~  ~' 

L i , . ~ i  = - -  6K4(x 2 - 1 ) e7 + ( _~.4 _ 12 - 32a 2 ln(~') + x <' + 12a'=) fll ~i 

+ 4a4(a  .-~ - 1 ) ~2 + ( - 40a2 + 20a4 + 24 - 41, <') f12 

+ [5/,- ~' - 29a "4 + (60 + 16 l n ( a ) )  x 2 - 4 8  In (a )  - 36]  f17 (B11 ) 

L../;i = 2 (x  2 - 1 )(fl21, 2 + 3a20c7 - 2a=e_, - f l ~ )  

+ ( 1 6  l n ( x ) - x  2 + 3 - 2 a  -4 ) f l l~ l  

+ ( - a  4 - 3 -  8 l n 0 c ) + 4 x  2)fl7 (B12)  

N O M E N C L A T U R E  

Br 
k 
R 
#- 

T 
~> 
l! 

II 0 

B r i n k m a n  n u m b e r  [ Eq. (3)  ] 
T h e r m a l  c o n d u c t i v i t y  

R a d i u s  
R a d i a l  d i s t a n c e  
T e m p e r a t u r e  
Refe rence  t e m p e r a t u r e  
D i m e n s i o n l e s s  t a n g e n t i a l  ve loc i ty  
T a n g e n t i a l  ve loc i ty  

,~40 18 3-1<X 
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/,lo--/.I 2 
X 

Terms of series solution for velocity 
Dimensionless radial distance 

Greek Symbols 

/t 
h" 

(9 
Oi-O~ 
g2 

Coefficients in the thermal conductivity model [Eq. (4)] 
Coefficients in the viscosity model [Eq. (5)] 
Viscosity 
Eccentricity of the Couette (inner radius/outer radius) 
Dimensionless temperature 
Terms of series solution for temperature 
Angular velocity 
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